第158章 你急不急?(求订阅月票)(2/3)
向,提出猜想比证明猜想更重要。”在数学中,k-理论(k-try)是多个领域使用的一个工具。在代数拓扑中,它是一种异常上同调,
在物理学中,k-理论特别是扭曲k-理论(d k-tyry),其中猜测它们可分类d-膜(d-d)以及广义复流形上某些旋量。
而这个理论最早的发现者,就是亚历山大·格罗滕迪克。
周易说道:
“多谢两位老师好意,我更想研究3n+1猜想又或者孪生素数猜想亦或者哥德巴赫猜想。”
二人听完倒是没多大的意外。
周氏解析法如果进行二次开拓,用来对付一些数论,那将是极为有利的工具。
不少普林斯顿解析数论方向的专家都在研究周氏解析法。
一些古典几何方向的人更是在研究周氏几何。
“那行吧,毕业要求也跟你说了,以你的天赋,加上解析法的开拓,只是毕业不难。
但是如果你在这边纸醉金迷,浪费自己的天赋,也许数年都难以毕业。更是对不起丘城同为你谋划这么多。”
米尔诺以告诫的口吻跟周易说道。
想要成为新一代数学大师,或许就得跟舒尔茨一样,形成自己的学派。
米尔诺必须得提醒一下他。
德利涅又说道:
“鉴于你还年轻,有些年少轻狂的脾气,所以让你在想三天,三天之后在给我们你的最后决定。”
周易尊敬说道:
“好的,老师。”
“你入学手续问题,檀明明已经给你办下来了,鉴于你的数学贡献,普林斯顿也会给你全额奖学金。不用担心经济问题。
但是,我也与米尔诺教授有同样的看法,希望你保持本心,不要浪费自己的天赋,有天赋与有巨大的成就,是两回事。”
德利涅作为周易导师之一,也十分严肃的教导道。
米尔诺九十多岁了,德利涅也快八十岁了,二人波澜的一生见过不少的天才,也见过了不少的华人天才,比如丘陶二人。
但是周易这种天赋,比起年少成名的陶来说,都要强上不少。
或者在未来,周易能够做到他们没有做到的事情。
比如证明黎曼猜想,或者胆子更大一点全部解决掉剩余的六大呛黎曼猜想)。
拿个奖不算什么,他们希望周易成为堪比亚历山大·格罗滕迪克那样的人,或许比格罗滕迪克更强。
周易还有70年的时间。
未来数学走向何方,怎么发展,这比拿奖或许更有意义。
没有什么比引导未来数学百年的发展史更为激动人心,也许还不止百年。
周易能感受到他们的关切之心,说道:
“好的,感谢两位老师。”
米尔诺好像想到了什么,也有些清楚周易的想法,说道:
“哈洛德·贺欧夫各特好像在用你的解析法研究强哥德巴赫猜想。”
周易:!!!。
“我会努力的。”
“好,那就这样吧。”
德利涅淡淡说道。
“老师再见。”
周易一边走,一边想这个猛人与哥德巴赫猜想。
在13年的时候,哈洛德·贺欧夫各特已经彻底的证明了弱哥德巴赫猜想。
瑛国数学家华林,在 1770 年出版的《代数沉思录》一书中,首次提出了如下形式的哥德巴赫猜想:
1每个大于 2 的偶数都是两个素数之和;
2每个奇数或者是一个素数,或者是三个素数之和。
第二点就是弱哥德巴赫猜想。
一个标准的现代版本是这样的:
i n= p_1+p_2;当( n≥6)是偶数;
=p_1+p_2+p_3,当( n≥9)是奇数,其中 p_i 均为奇素数。
如果猜想 i 成立,那么对于奇数 n,我们可以将 n-3 表成两个奇素数之和,因此猜想 ii 就成立。也就是说,猜想 ii 是猜想 i 的推论。保留猜想 ii 的一个原因是,可以使得猜想在形式上关于奇数和偶数都有表述。
周易摇了摇头,不由得苦笑,还好来得及,要是一直在水木大学,没有跟外界交流,估计都不知道这些人已经开始在研究了。
不过眼下研究3n+1猜想或许更为有用。
毕竟还要兼顾科研助手的普及,这是无形之中加上的一项zz任务。
也是周易布局科研助手重要的一环。
毕竟3n+1猜想在丑国家喻户晓,只要在丑国引起轰动,必然在欧洲引起轰动,到时候数学水平可能到不了lv6,但是影响力可不弱。
至于哥德巴赫猜想,回国之后在开始研究应该也来得及。
檀明明因为周易单独居住在一个院落,所以直接搬来跟周易一起。
算是搭个伴。
四十多岁的人还没个对象,周易不禁感慨这货怕是要与数学相伴到老了。
“回来了?”
檀明明看到周易回到,手中还拿着东西。
“嗯,确定了一下我的研究方向。”
周易说道。
檀明明立马来了兴趣,问道:
“怎么说,跟着德利涅继续研究标准猜想,为解决黎曼猜想添砖加瓦,还是跟着米尔诺教授做课题?”
周易摇了摇头,说道:
“都不是,我准备解决3n+1猜想。”
檀明明:。
“行叭,彼得·萨纳克教授是这个方向专家,是14年沃尔夫奖得主,多多讨论可能收获良多。”
檀明明好像想到了什么,跟周易说道。
周易眼睛一亮,自己来这里不就是为了跟一些大佬
第2页完,继续看下一页